Detecting Student Engagement through
live Video Stream

Chris Sexton

12/2/2020

Abstract

Detecting student engagement from video is a difficult task. This paper describes in detail the
methods and processes to train deep learning models to predict engagement with CNNs and
RNNs using cloud infrastructure, and the practical deployment of these models to an NVIDIA
Jetson device. Although the models tend to overfit to training data, the overall system is designed
in such a way that as alternative models are developed they can be integrated. Some attempts are
made for code reuse, usability and the centralized storage of data and results.

Introduction

More and more students are engaged in online learning, either as a necessity due to the recent
COVID-19 pandemic or voluntarily through remote learning courses. For some students, the shift
from in classroom attendance to online attendance can be difficult, and communicating over video
less immersive. Teachers also have to contend with ensuring students are engaged in the learning
process, which can be difficult when the primary access to student response is through a small
video representation in an online meeting window.

This work uses video capture to identify when students become bored and provide real time and
offline feedback to the teacher. This is a proof of concept, examining the possibility of creating
models to classify engagement from video and then applying these models to low powered edge
devices.

High Level Solution

The solution combines cloud and edge technology to train deep learning neural net models from
previously labeled videos. Individual frames are captured from the videos and utilised in various
models, trained to predict boredom levels from O (not bored) to 3 (most bored). Models are trained
against full images and also images of just the students faces, to reduce the influence of
background data. Images are captured from webcam video streams.

Technical Architecture

l ﬁMDDELS

MODELS

AWS
EFS

AWS AWS AWS
B2t Eﬁ;’;‘ E‘}jﬁ;}f ! NVIDIA JETSON
docker docker docker | _@._ docker
Data i
Preparation Face " | Gt i
& Image Detection » | Training i Inference
Extraction !
i A L -
IMAGES / FACES Text J i

Report / Video Flacording—i—

AWS

EC2

Micro
DAISEE
Labeled
Videos

The project is split into two sections, the data preparation and model training shown on the left of
the dotted line, and then the live video capture and inference on the Jetson device on the right..
Docker is used extensively throughout.

Training
Purpose Type GPU vCPUs Mem (GB)
Image Extraction | c4.8xlarge None 36 60
Face Detection p3.2xlarge 1*NVIDIATesla | 8 61
V100 (16GB)
Storage EFS

AWS is used for cloud infrastructure to support training. EFS is used as the back end storage to

provide persistence between environments for data and saved models. Docker is used to
containerize the code, using the tensorflow:latest-gpu-jupyter base image.
Tensorflow v2 is used for the deep learning platform, along with Keras and openCV for image
processing.

Data Preparation and image extraction is performed on a compute optimized c4.2xlarge.
FFMPEG is used to extract images from training video streams. Two extractions were used, 1FPS
for CNN based models and 2FPS for RNN based models.

Face detection is performed using a pre-trained DNN model, with weights trained using caffe.
DNN is available with OpenCV.

The model training scripts are designed to be flexible and modular, and can run with a variety of
model inputs:

Model: e.g. XceptionV 3, MobileNetv2, EfficientNet, Inception
Image Size, e.g. 224,299

Data Type: e.g whole images, faces only, augmented data
Weights, e.g. imagenet

epochs

batch_size

Learning rate

Learning rate decay

Inference

Inference

Purpose Type GPU vCPUs Mem (GB)

Inference NVIDIA Jetson 512-Core Volta 8-Core ARM 32
Xavier v8.2 64-Bit

Inference is performed on an NVIDIA Jetson with an attached webcam. Model files are copied to
the Jetson with SCP..

The Jetson uses ARM computing architecture and so some compilation of code is required for
inference to work, specifically newer versions of OpenCV (>3.2). For inference the docker base
image nvcr.io/nvidia/l4t-ml:r32.4.3-py3 is used. Tenroflow, Keras and OpenCV are
installed.

Inference is done in real time against a video stream, with individual and running totals of
engagement presented on screen. At the end of the meeting a report is saved and optionally sent
to AWS S3 using MQTT for offline analysis. The client demo scripts provide some options when

-r --record: whether to record the video

-m --messaging, whether to send report to AWS using MQTT

-p --path, directory to record the video, default is home

-f --filename, name of the video recording file, default is infer<datetime>.avi
-C --codec, video codec, default is MJPG

-fps --fps, frames per second, default is 2

-hg --height, height of video to record default is 480

-W --width, width of video to record default is 640

Data Acquisition and Processing

DAISEE Data for Affective States in e-Environments is used to provide ground truth for the
classification models, publicly available on request. It contains 8925 multi label 10 second video
snippets captured from 112 users. Each snippet has been scored from O to 3 for boredom,
confusion, engagement and frustration.

The DAISEE data has already been organized into train, validation and test datasets. Each video is
structured into a deep directory structure, i.e. Purpose -> Person -> Snippet -> Video file. A
separate label CSV file contains the file path and label for each 10 second video snippet. All videos
associated with one person are contained within one purpose, i.e. there cannot be videos from
person Ain Train and also in Validation (or Test).

|__Test
|__500044
|__500067
|__500095
|__5000441001
|__5000441002
|__5000441003
|__5000441003.avi
|__Train...
|__Validation...

The distribution of data between the different classes (0, 1, 2, 3) is shown in the following table, for
the different engagement types (Boredom, Engagement, Confusion, Frustration).

Boredom Engagement Confusion Frustration

0 3822 61 5951 6887
1 2850 455 2133 1613

2 1923 4422 741 338

3 330 3987 100 87
total 8925 8925 8925 8925
average 0.86 2.38 0.44 0.29
% labeled 0 43% 1% 67% 77%

The distribution for Boredom is slightly more even than other engagement types, and stands as a
good substitute for engagement. When a student is Engagement = O they are more likely to be
Boredom =3

Affect Distribution Students with Engagement:0
8000 45
7000 40
6000 35
30
5000
25
4000
\ 20
3000 15
2000
) : I I I
1000 5 l
) —— : B -
0 1 2 3 0 1 2 3

e Boredom sss=Engagement Confusion Frustration mBoredom m Confusion Frustration

Individual images are extracted from the video files and stored in a structured format suitable for
boredom classification, depending on the FPS used. Additional storage areas are created for
additional image manipulation, i.e. face detection and augmentation:

Directory Structure

data/DAISEE / Contains all the data based on DAISEE provided data

... DataSet The original videos stored as described above

... Labels CSVs containing labels for videos

.. 1IFPS Separate directories for images captured at 1 or 2 Frames per
.. 2FPS Second

......... Test, Train, Validation

...... data Files containing whole images extracted at parent FPS,

......... Test, Train, Validation organized by Test/TrainValidation and Boredom Class (b0, b1,
v venvee b0, b1, b2, b3 b2, b3)

...... dataFaces Files containing just faces, extracted from data, organized by
......... Test, Train, Validation | Test/TrainValidation and Boredom Class

veveenenn .. D0, b1, b2, b3

...... dataAug Files containing augmented images, extracted from data,
......... Test, Train, Validation organized by Test/TrainValidation and Boredom Class

veveeneen .. DO, b1, b2, b3

...... datalmages Files containing whole images extracted at parent FPS,

organized by Test/Train/Validation but containing all images
for all engagement types (for multi-task modelling)

Augmented Images are created using keras ImageDataGenerator

Face Capture

Haarscascade and DNN were tested, with DNN capturing faces from more image snippets than
haarscascade. Examining images extracted at 1FPS:

Original haarcascade dnn dnn difference
Test 17844 17443 17830 387
Validation 14294 14062 14289 227
Train 53584 53352 53566 214

Total 85722 84857 85685 828

Modeling

Over 30 experiments were performed, divided into the following 3 general areas:

Model Family:

CNN / Transfer
Learning

CNN->LSTM /
CONVLSTM

Multi Task CNN

Image Extractions:

Extract Boredom
Images at 1 FPS

Extract Boredom
Images at 2 FPS

Extract All Images at 1
FPS

Whole Images or
Faces:

Whole

Images

Whole Images

The best results from the three methods are given below:

Common parameters:

Learning Rate: 0.0001
Learning Rate Decay: 1.00E-06
Weights: Imagenet

Optimizer: Adam (apart from Multi Task which uses SparseCategoricalCrossentropy)

Whole Images

Model datatype |[FPS| Base Model Trozen epochs ba.tch accurac | val test
ayers size y laccuracy | accuracy
CNN A”i’:fe”fd 1 | MobileNetv2 |[:126] | 100 | 32 | 088 | 034 | 036
CONVLST | Whole |, | - VistmM2D | Al | 100 | 16 | 096 | 032 | 034
M Images

CNN -> Whole MobileNetV2 ->

LSTM mages | 2 ST Al | 100 | 32 | 088 | 031 | 038

059, | 0.39, | 42.48,

Multi Task Whole . 0.65, 0.46, 56.01,

(CNN) | Images | + | Xception Al 1100016 1 670 | 064 | 6692,

059 | 039 | 4277

Multi Task Results are presented in order for Boredom, Engagement, Confusion, Frustration.

All of the models had a tendency to overfit, this is likely due to the nuanced nature of the problem
set. The facial image differences between four levels of boredom is slight and difficult for a mode
to distinguish.

CNN Models

For the models CNN, the classification layer is removed and 2 Fully Connected Dense Layers
added with a dropout of 0.2 before the output layer.

= layers.Flatten () (base model.output)

= layers.Dense (1024, activation='relu') (x)
layers.Dropout (0.2) (x)

= layers.Dense (512, activation='relu') (x)

XXX X X
Il

= layers.Dense (4, activation='softmax') (x)

The best CNN results all used a frame rate of 1 FPS: the videos do not contain a lot of action and
using a higher frame rate does not result in performance improvement. Faces rather than whole
images are used for classification input, and the addition of augmented images for the under
represented boredom 3 class helped the model to find more instances of boredom 3.

The model is overfitting and over predicting for class BO. This still gives the best results during
inference (better than LSTM and multi-task) but more work needs to be done.

Confusion Matrix

1184 820 32 model accuracy

model loss

5000 M= train 5] — = ===
. l “ p Y
700 B85 18 4000 - e
3000 »
g 15
5

8
— 2000 8

Tue labels

05 10

m - 1054 314 1258 %2 00 0
S 0s
1] i [l e

0 1 2 3 Wi
Predicted labels

Muti task Model

For the multi task model there are four classification heads, one for each class:

x = GlobalAveragePooling2D () (base model.output)

X Dense (128, activation="relu", name="fcl") (x)

X Dense (64, activation="relu", name="fc2") (x)

boredom = Dense (4, activation='softmax', name="yl") (x)
engagement = Dense (4, activation='softmax', name="y2") (x)
confusion = Dense (4, activation='softmax', name="y3") (x)

frustration = Dense (4, activation='softmax', name="y4") (x)

CNN -> LSTM Model

First features are extracted from the base model (e.g MobileNetV2) at the
global_average_pooling2d layer. The features are reshaped for input into the LSTM model. Whole
images are used, captured at 2 FPS to provide a sequence of 20 frames.

model = Sequential ()

model.add (LSTM (units=2048, input shape=(20,1280),
return sequences=False,
dropout=0.2))

model.add (Dense (512, activation='relu'))

model.add (Dropout (0.2))

model.add (Dense (4, activation='softmax'))

CONVLSTM Model

Whole images are used, captured at 2 FPS to provide a sequence of 20 frames.

model = Sequential ()
model.add (ConvLSTM2D (filters = 106, kernel size = (3, 3),
return sequences = False, data format = "channels last", input shape

= (seqg_len, img height, img width, 3)))
model.add (Dropout (0.2))

model.add (Flatten())

model.add (Dense (256, activation="relu"))
model.add (Dropout (0.3))

model.add (Dense (4, activation = "softmax"))

Deployment

Models are deployed to the Jetson using SCP. Different python programs are written for each of
the model types

infer_cnn_dnn.py
Infer_muti_task.py
Infer_cnn_Istm.py
infer_CONVIstm.py

The infer_cnn_dnn is the best demo script and incorporates the following features:

Options for setting frame rates and codecs for image capture
Options for recording video

Options for using MQTT messaging for final report

Display’s running count of each class

Display’s “recording” message if video capture is being recorded
Saves summary text report of video

Example Results from CNN

BORED =0 BORED =1

BORED =2 BORED =3

Really Engaged: 27
Doing OK:198

A Bit Bored: 43
Checked Out: 2

Example Results from Multi-Class

Challenges

Challenges exist in ensuring that library versions are consistent between AWS X86 architecture
and Jetson ARM architecture.

Issue Mitigation
Overfitting Add additional meta inputs for modelling, such as gaze direction,
head angle.

Add more fundamental features, eyes shut, student at desk
Consider other operational approaches to problem

No docker image support for DNN Compile and install OpenCV from source

Model Sizes too big for Jetson Use MobileNetV2

General Memory Errors Configure Tensorflow to grab more memory as needed
Unbalanced training set Augment Images for class three

Reduce # of images for class zero

Base models not designed for engagement Unfreeze later layers for training

Future Improvements

e Package up the code, create modules for reuse

e Feedback Loop for improved models. A system whereby teachers or students express their
engagement during classes through a simple interface.

e Incorporate Gaze detection into the training process, if students are looking away from the
screen for too long, identify as losing attention.

e Identify the difference between working (looking down) and disengagement (looking away,
unfocussed gaze

e Report to contain timing of boredom to align with duration of class for correlation

e Consider ethics of application, do not allow recording of video, summarize classroom

e Capture video from multiple students in online recording (e.g. from Zoom or MS Teams)

Addendum - Gaze ML

Using gaze detection may be a useful input to the modelling process. Seonwook Park et al have
provided code to predict eye gaze detection from video, which has been ported to the Jetson:

vis (on e6af4a666a2a)

s 4

https://github.com/swook/GazeML

References

[1] Automatic Recognition of Student Engagement using Deep Learning and Facial Expression, Omid
Mohamad Nezami, Mark Dras, Len Hamey, Deborah Richards, Stephen Wan, and Ce “cile Paris, 2018,
https://arxiv.org/abs/1808.02324

[2] Prediction and Localization of Student Engagement in the Wild, Amanjot kaur, Aamir Mustafa, Love
Mehta, Abhinav Dhall, 2018, https://arxiv.org/abs/1804.00858

[3] DAISEE: Towards User Engagement Recognition in the Wild, Abhay Gupta, Arjun D'Cunha, Kamal
Awasthi, Vineeth Balasubramanian, 2016, https://arxiv.org/abs/1609.01885

[4] Gaze360: Physically Unconstrained Gaze Estimation in the Wild, Petr Kellnhofer, Adria® Recasens, Simon
Stent2, Wojciech Matusik, and Antonio Torralb, http://gaze360.csail.mit.edu/iccv2019 gaze360.pdf

[5] Learning to Find Eye Region Landmarks for Remote Gaze Estimation in Unconstrained Settings,
Seonwook Park, Xucong Zhang, Andreas Bulling, Otmar Hilliges, 2018,
https://ait.ethz.ch/projects/2018/landmarks-gaze/

https://arxiv.org/abs/1804.00858
https://arxiv.org/search/cs?searchtype=author&query=Gupta%2C+A
https://arxiv.org/search/cs?searchtype=author&query=D%27Cunha%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Awasthi%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Awasthi%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Balasubramanian%2C+V
http://gaze360.csail.mit.edu/iccv2019_gaze360.pdf
https://ait.ethz.ch/people/spark/
https://ait.ethz.ch/people/hilliges/
https://ait.ethz.ch/projects/2018/landmarks-gaze/

